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PREFAC-
I/

The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC&G)
Division, of the Naval Ocean Research and Development Activity (NORDA)
has been involved over the past several years in the development of
algorithms and techniques for computer recognition of free-form
handprinted symbols as they appear on the Defense Mapping Agency (DMA)
maps and charts. NORDA has made significant contributions to the
automation of MC&G through advancing the state of the art in such
information extraction techniques. In particular, new concepts in
character (symbol) skeletonization, rugged feature measurements, and
expert system-oriented decision logic have allowed the development of
a very high performance Handprinted Symbol Recognition (HSR) system
for identifying depth soundings from naval smooth sheets (accuracies
greater than 99.5%).

The study reported in this technical note is part of NORDA's continu-
ing research and development in pattern and shape analysis as it
applies to Navy and DMA ocean/environment problems. The issue addres-
sed in this technical note deals with emerging areas of syntactic and
semantic techniques in pattern recognition as they might apply to the
free-form symbol problem.,The author was asked to review these power-
ful tools in light of his earlier support to the Pattern Analysis
Laboratory [1] and to analyze their potential for extending the HSR
system to a wider range of symbols. These results contribute to the
overall NORDA R&D effort to investigate and develop methods for more
precise geometric shape descriptions zor application to Ocean Science
Information Extraction (OSIS) problems.
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I. INTRODUCTION

This report discusses a character recognition approach based on the

use of syntactic/semantic concepts. This approach is consistent with

our earlier work for NORDA in the sense that it is based on the same

philosophy and types of features that were recommended in an earlier

report [1l and which have been investigated since then. The material in

the following sections unifies these recommendations and includes

extensions such as techniques for handling interconnections between fea-

tures, the recognition of feature strings by syntactic methods, and the

use of semantics for quality assurance both in the computation of

features and in the recognition stage. The methods described in this

report are intended as a complement to the techniques presently being

used in the NORDA OCR system, and as a potential tool for handling forth-

coming problems in alphanumeric character recognition.

The structure of the proposed approach is shown diagramatically in

Fig. 1. It is assumed that the input to the system is a skeleton of

the character to be recognized. The selection of a skeleton input is

consistent with the processing capabilities of the present OCR system.

A skeleton representation also has the advantage that it facilitates the

computation of features such as bays, lakes, and branch points, which have

been deemed essential for rugged character representations. It is noted,

however, that the methods discussed in the following sections could

easily be modified to accept character outline (border) inputs.

The feature extraction and attribute assignment stage has the

function of computing and quantifying all the features required for

recognition. As explained in more detail in Section 2, this stage is

based on a hierarchical, semantic-guided approach. The function of the

screening stage is to select a particular set of recognition modules to

process a given input. The basic idea is that, at this point in the overall

process, the features detected in a character can be used to advantage

in guiding the recognition strategy to be applied to the input. The

pre-selection of a subset of recognition procedures not only simplifies

t~ .• - A.-: - ,.4 , - -,
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Figure 1. Syntactic/semantic character processor.
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the organization of the classifier, but has the added advantage of

operational efficiency. The recognizer is based on the use of syntactic/

semantic techniques. As described in Section 3, the syntax establishes

the structure of the pattern classes under consideration, while the

semantics establish the meaning or validity of a particular pattern in

the context of that structure.

One of the most important aspects in the selection of any pattern

recognition approach is the availability of learning algorithms.

The techniques discussed in this report are formulated to take advantage

of one of the most powerful learning techniques available for syntactic

systems. As discussed in Section 4, the proposed learning algorithm

depends on only one user-specified parameter, and the behavior of the

procedure as a function of this parameter is well understood and easily

analyzed.

Another important advantage of the approach discussed in the

following sections is that it includes a procedure for checking class

separability. Given the recognizers learned from a set of training

pattern classes, the procedure discussed in Section 5 identifies the

patterns that cannot be classified into a unique class, thus yielding

information related to the discriminatory power of the features used in

the system, and the structure of the patterns in the overlapping regions.

Although as indicated above, learning algorithms already exist for

the syntactic components of the character processor, no such algorithms

are yet known for the semantics. The material in Section 6 addresses this

problem from an interactive point of view which utilizes automatic

learning for the syntax and user-defined rules to establish the correspond-

ing semantic components of the system.

......... +
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II. FEATURE EXTRACTION AND ATTRIBUTE ASSIGNMENT

2.1 Background

In this section we discuss a hierarchical, semantics-based approach

for feature extraction, as well as the assignment of attributes to those

features.

The basic approach is shown diagramatically in Fig. 2. For features

at level k of the hierarchy, we consider a structural description of

the form

Level k/features/attributes/primitives/semantic rules

The hierarchical nature of the method implies that the procedure starts

with simple primitives and successively builds more complex features from

them. It is noted that what we call primitives in the computation of

a feature at level k may be features that have been computed at levels

lower than k. This terminology is used for consistency in the structural

description given above.

The attributes are used for characterizing each feature with descrip-

tors such as length, orientation, and location of its centroid. The

use of semantics allows quality control of the features generated at

all levels of the hierarchy. The approach is to use semantic rules in

order to guarantee that all features used for subsequent recognition are

meaningful in the context of character recognition.

Level zero of the hierarchy consists of the input data to the recog-

nition system (e.g., character skeletons). The function of the other

levels is explained in the following sections.

2.2 Level One: End Points

Level I of the hierarchy extracts all end points in a given skeleton.

The structural description is

Level I/end point/attributes/primitives/semantic rules

where the elements of the description are as follows:
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Figure 2. Hierarchical, semantic-guided feature extraction
and attribute assignment.
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Attributes

The only attribute assigned to an end point is its location.

Primitives

The primitive of an end point is a single pixel satisfying the follow-

ing rule:

Semantic Rule

R1(1) = TRUE for any pixel with exactly one m-neighbor.

Thus, all pixels for which R1(1) is TRUE are labeled as end-point features.

2.3 Level Two: Branch Points

Level 2 of the hierarchy extracts branch points using the following

desci-iption

Level 2/branch point/attributes/primitives/semantic rules

where the elements of the description are as follows:

Attributes

The attributes assigned to a branch point are its location and number

of branches attached to it.

Primitives

The only primitive of a branch point is a single pixel satisfying

the following rule:

Semantic rule

q1(2) = TRUE for any pixel with more than two, and less than T (2),

m-neighbors, where Tl(2) is a threshold (e.g., four).

All pixels in an input skeleton for which R1 (2) is TRUE are labeled as

branch-point features.

2.4 Level Three: Arcs

Arc features have the structural description

Level 4/arc/attributes/primitives/semantic rules

where the elements of the description are as follows:

V .-.
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Attributes

The attributes assigned to an arc are the location of its two termi-

nator points and its length. A terminator point in this case is either

an end point or a branch point, and the arc length is the checker-board

distance between the terminator points.

Primitives

The primitives of an arc are the set of pixels satisfying the follow-

ing semantic rules:

Semantic Rules

R1(3) = TRUE if only two distinct pixels are terminator points.
R2 (3) = TRUE if there is only one set of pixels, each pixel having

exactly two m-neighbors, and lying between the terminator

points identified in R1 (3).

An arc feature is then a set of pixels for which Rl(3) (R 2(3) = TRUE.

2.5 Level Four: Lakes

The structural description for lakes has the form

Level 4/lake/attributes/primitives/semantic rules

Attributes

The attributes assigned to a lake feature are: (1) the location of

its centroid: (2) the error of its least-square-error elliptical fit (see

Appendix A); (3) the direction of its principal axes, dl(4) and d2(4);

(4) the variance (spread) along each principal axis, v1 (4) and v2(4); and

(5) the location of any branch points along the boundary.

Primitives

The primitives of a lake are pixels satisfying the following semantic

rules:

t More generally, a terminator point is any pixel that denotes the end of a

feature. The feature may be embedded between two other features, in
which case both terminator points could be internal pixels.

e---- /'r' • -- . ' . -- 
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Semantic rules

R1(4) = TRUE if there is a set of m-connected pixels (including

branch points) forming a closed boundary.

R2(4) = TRUE if the elliptical fit error is less than a threshold

T1 (4).

R3(4) = TRUE if the ratio v1 (1)/v 2 (l) is less than a threshold

T2 (4), where it is assumed that vl(l) > v2(1).

Thus, a lake feature is a set of pixels for which R1 (4)fOR 2(4) OR 3(4)

TRUE. It is noted that rule R1 (4) establishes a lake in the general sense

that it refers to a closed boundary. Rules R2(4) and R3 (4), however,

further refine this concept by establishing a valid lake shape for the

purpose of character recognition.

2.6 Level Five: Polygonal Segments

The features discussed in this and the following three sections deal

with the characterization of arcs. The first step is to approximate a

given arc by a set of connected polygonal segments using the structural

description

Level 5/polygonal segment/attributes/primitives/semantic rules

The elements of this description are as follows:

Attributes

The attributes used for each polygonal segment are: (1) length, (2)

direction, (3) location of terminator points, (4) location of centroid

(i.e., midpoint), and (5) approximation error.

Primi tives

The primitives of polygonal segments are the pixels in a given arc.

Semantic rules

R1 (5) = TRUE if the mean-squared error between a polygonal segment

and its corresponding arc is less than a threshold T1(5).

R2(5) = TRUE if the number of polygonal segments satisfying R1 (5)

is less than a threshold T2(5).



9

We say that a polygonal approximation of a given arc is valid if Rl(5) )

R2(5) = TRUE. Semantic rule RI(5) establishes, by means of T1(5), an

acceptable approximation in a mean-squared-error sense. Since it is

always possible to make all errors arbitrarily small (the limiting case

is zero by using n - 1 segments, where n is the number of pixels),

semantic rule R2(5) is used as an "irregularity filter." That is, pre-

selecting the maximum number of polygonal segments that are allowed

eliminates as unacceptable irregular arcs that require a greater number

of segments in order to satisfy the error criterion in Rule Rl(5).

The direction attribute of each polygonal segment is quantized into

one of eight possible directions, as shown in Fig. 3. Since two

directions differing by 1800 are possible for each segment, the ambiguity

is resolved by assuming a standard clockwise, up-down scan of the poly-

gonal structure.

2.7 Level Six: Straight-Line Segments

At this level in the hierarchy we consider straight-line segments

(SLS's) which are the least complex features that can be formed using

polygonal segments as primitives. The structural description is as

follows:

Level 6/SLS/attributes/primitives/semantic rules

Attri*butes

The attributes of each SLS are: (1) length, (2) direction, (3) loca-

tion of its centroid, and (4) location of its terminator points. Although,

as will be seen below, an SLS may be composed of a series of polygonal

segments, the length of an SLS feature is defined as the Euclidean

distance between its terminator points, its direction is defined as the

direction of a line passing through these two points, and its centroid

is simply the midpoint. The direction attribute is encoded using the

approach indicated in the previous section.

Primitives

The primitives of an SLS are polygonal segments satisfying the follow-

ing semantic rules:

IL:
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Semantic Rules

R1(6) = TRUE if two contiguous polygonal segments have an interior

angle greater than a threshold T1 (6).

R2(6) = TRUE if a single polygonal segment has length greater than

T2(6)*L where L is the sum of the lengths of all the

polygonal segments and T2(6) is a constant less than one.

R3(6) = TRUE if there is only one polygonal segment.

Rule R1(6) is applied recursively and any segments for which R1(6)uR2 (6)u

R3(6) = TRUE are classified as SLS's.

2.8 Level Seven: Corners

Corners t have the structural description

Level 7/corner/attributes/primitives/semantic rules

Attributes

The attributes are: (1) angle, (2) depth, (3) width, (4) area,

(5) direction, (6) length of sides, (7) location of the terminator points,

(8) location of the centroid, (9) convexity, and (10) concavity. The

meaning of these attributes may be explained with the aid of Fig. 4. The

angle of a corner is defined to be the interior angle formed by the two

sdes. If we treat the corner as a triangle, as shown in Fig. 4, the

width is defined as the length of the base of the triangle, while the

depth is the length of its altitude. The area is the area of the

triangle. The direction of the corner (quantized as in Fig. 3) is given

by the direction of the altitude segment directed from the corner point

to the base. The centroid of a corner is the average of the centroids

of its sides. To establish whether a corner is convex or concave we

consider a traveler traversing the corner in a clockwise up-down manner.

If the base of the triangle lies to the travelers right hand, the corner

is convex; otherwise it is concave.

tThis classification of corners is not related to the measures of

cornericity discussed in Appendix B.

"" -
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Primitives

The primitives of corners are SLS's satisfying the following semantic

rules:

Semantic rules

R1 (7) = TRUE if R3(6) = FALSE

R2(7) = TRUE if there remain two or more contiguous SLS's after the

recursive application of rule R1(6).

If R1(7) OR 2(7) = TRUE we have the condition for at least one corner.

If there are more than two contiguous SLS's, they are considered pairwise,

each contiguous pair forming a corner and possibly sharing sides with

other contiguous corners.

2.9 Level Eight: Bays

The final features computed by the hierarchical feature extractor

are bays, which have the structural description

Level 8/bay/attributes/primitives/semantic rules

A ttribu tes

The attributes of a bay are: (1) opening, (2) area, (3) direction

(4) degree, (5) height-to-width ratio (H/W), (6) length, (7) location

of the terminator points, (8) location of the centroid, (9) convexity,

and (10) concavity. The opening attribute is simply the Euclidean dis-

tance between the two terminator points. The area is the sum of the areas

of the corners forming the bay (see below). The direction of a bay is

the average of the directions of the corners. The degree of a bay is

defined as the number of corners of which it is composed. The attribute

H/W is the height-to-width ratio of a bounding box (the orientation of

the box could be along the principal eigen axes or simply along the x-y

extremes). The length of a bay is equal to the sum of the lengths of

the sides of the corners. The centroid is the average of the corner

centroids. Finally, a convex (concave) bay is formed by two or more

convex (concave) corners.

I

T -z-.-,.'."t..
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Prinmitives

The primitives of a bay are corners satisfying the following semantic

rule:

Semantic rule

R1(8) = TRUE if there are two or more convex (concave) contiguous

corners.

Thus, the presence of a bay is established simply by combining corner

features which are contiguous and have the same convexity or concavity

attribute.

The material in Section 2.2 through 2.9 is summarized in Table 1

and illustrated in the following example.

Examnple

The concepts discussed thus far are illustrated in Fig. 5. The input

to the hierarchical feature extractor is shown in Fig. 5(a), and the

result of the first level of processing is to attach the labels El and E2

to the two end points in the character, as shown in Fig. 5(b). Level 2

produces a null output (there are no branch points), while Level 3 identi-

fies arc and terminator points t1 and t2. It is noted that t1 and t2

are simply the end points found in Level 1. Since there are no lakes in

the character, Level 4 produces a null output. Level 5 produces polygonal

segments sI through s5. as shown in Fig. 5(d). Note the introduction of

terminator points t3 through t6 used to denote the ends of the polygonal

segments. Level 6 has the output shown in Fig. 5(e). Polygonal segments

s3 and s4 were combined in this case into straight-line segment SLS 3 and

consequently, terminator point t5 is no longer of interest. Level 7

produces corners cl, c2, and c3, along with their terminator points. It

is noted that t4 is a terminator point for both c, and c3 and that c2 has

terminator points t3 and t6. Finally, the output of Level 7 is shown in

Fig. 5(g). It combined corners cI and c2 into bay1 with terminator

points tI and t6. Thus, the highest-level description of the input

character consists of bay1 followed by corner3.

It is important to note that all the information computed at a given

level is available to all higher levels. Thus, the descriptors associated
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with the location of terminator points, length and direction of line

segments, etc., are implicitly available to further refine the final

features for the purpose of establishing their semantic validity.

2.10 Coding of Feature Strings

Once individual features have been extracted and their attributes

computed, the next processing step is to organize the features in the

form of a string suitable for the syntactic/semantic recognizer. A set

of m features extracted from a given input character will be represented

by the string notation

=fIf 2...fm

where each fi represents any of the features obtained by the procedures

discussed in Sections 2.2 through 2.9.

As discussed in Section 3, the basic structure of a character will

be inherent in its string representation, while semantic rules will be

used for quantitatively refining the information available in a given

string. In order to simplify the notation, the following codes will be

used to denote the features discussed in the preceding sections.

p: branch point

a: lake

s: straight line segment

c: corner

b: bay

x: convex

v: concave

It is noted that the last two codes refer to attributes which apply

to corners and bays. Although these two attributes could be incorporated

in the semantic rules, they are included in the string representation

as a rugged, overall descriptor to differentiate, for example, between

5's and S's. The refinement of a given corner or bay (i.e., direction,

length, etc.) will be handled via the semantics. As indicated in

Section 3, the degree of information incorporated in a string vs. a

semantic specification is an arbitrary trade-off. The approach taken here

01- . ,r q
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is,to include in a string,features and descriptors which can aid in making
gross decisions between characters early in the recognition stage. It

is also noted that end points, arcs, and polygonal segments are not

included in the feature codes. The reason for this is that they are

either implicit in, or refined into, one or more of the features coded
above prior to recognition.

In order to reduce the complexity of the recognition stage, it is
advantageous to organize all coded strings in a systematic manner. One

way to accomplish this is to group all features in order of increasing
complexity in the feature hierarchy discussed in Sections 2.2 through 2.9.

For example, a character composed of a bay, a lake, a branch point, and
a straight-line segment would be coded as the string a = pasb. The

descriptors x and v precede the feature they modify. If the bay in this

example were convex, the complete string representation would then be
= pascb. Multiple features of the same class are grouped together. If,

for instance, there were two branch points the string would be a = ppascb.

j
- - *1-.--u
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III. SYNTACTIC/SEMANTIC RECOGNITION

3.1 Background

The existence of recognizable, finitely describable structure in
a pattern is essential for success in the syntactic approach. Basically,

a formal grammar is developed to generate elements of a language that
defines a pattern class, and an automaton or a parsing algorithm is used

to recognize precisely that language t2,3].

For example, the grammar G, = (N,EP,S,) with nonterminals N = {S,B,C},
terminals z = {a,b,c), productions P = (S-+ aSBC, S->aBC, CB->BC, aB->
ab, bB->bb, bC->bc, cC-> cc}, and starting symbol S, can be shown to

generate the language

L(G1) = {yly = anbncn, n > 11

If the terminals a,b,c have an interpretation as pattern primitives which

are unit-length directed line segments

ab---- c

then L(G,) defines a class of equilateral triangles via a trace of the

boundary of a triangle, as shown in Fig. 6. The nature of the productions

makes grammar G1 a context-sensitive grammar.

lany, if not all, practical pattern recognition systems that use

structural models are in fact hybrid systems (41; that is, they are combi-

nations of structural modeling techniques (primarily using syntactic models)

and classical decision-theoretic techniques. One frequently finds that

decision-theoretic methods are used to identify and extract the primitives

in a given pattern, then syntactic methods are used to attempt the final

classification by an analysis of the relationships among the primitives.

The productions in a grammar like GI above are purely syntax rules.

They define implicitly the form that strings of terminals must have in

order to belong to the language L(GI). In the example given above, that

II IMI i --"
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Pattern String Representation

abc
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Figure 6. Patterns and their representation as
strings.

.1



23

form is anbncn or, in words, "at least one a followed by the same number

of b's followed by the same number of c's." But the productions in the

grammar G1 do not deal in any way with values--numerical, vector, logical,

or otherwise--that terminals a,b,c might take on.

The assignment of quantitative information to features in a syntactic

pattern recognition formulation is accomplished via the use of attributed

grammars [4-8]. The term "attributed" in this context means that we will

employ a conventional syntactic grammar, but will now allow the terminals

and nonterminals to have associated attributes which are assigned values

by some predefined mechanism. For example, the syntactic description of

certain types of 2's is given by the string a = xbvc (i.e., a convex bay

followed by a concave corner). As discussed in Section 2, each feature

has a given set of attributes, such as direction and length, which are

quantifiers of that feature. Thus, the use of syntax establishes a given

basic structure, while the attributes attach quantitative descriptions

to the features forming that structure. The rules for assigning meaning

to the resulting attributed structure are semantic rules analogous in form

to the semantic rules described previously in connection with hierarchical

feature extraction. In the case of recognition, however, the semantic

rules are used for assigning meaning (i.e., valid vs. invalid character)

to the overall structure. Thus, we see that the attributed-grammar

approach to recognition involves three principal elements: (1) the

specification of a conventional syntactic grammar, (2) the use of

attributes for quantifying the features, and (3) the specification of a

set of semantic rules for assigning meaning to an attributed structure.

There are two major reasons for considering attributed grammars in

structural recognition. First, in most problems, it makes more sense to

identify features as symbols together with their attribute values than

it does to try to package all information about the primitives into a

much larger set of symbols without attributes. Second, it is well known

that the use of attributes and associated semantic rules can dramatically

reduce the complexity of the syntactic analysis of certain classes of

patterns [9].

As an illustration, we reconsider the context-sensitive language

{yly anbncn, n > 1) generated by the grammar G, given earlier. The

1.
I- - ... -- .. . . . ... .. . :, . . . . .'
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inclusion of some very simple semantic rules allows the use of a much

simpler regular grammar, as follows. The regular grammar G2 = (N, ,P,S)

with nonterminal N = {S}, terminals Z = {a,b,c}, productions P = fS 1 aS,

S2 _ bS, S 3 _ cS, S4 _, c} numbered for reference, and starting symbol S,

generates a language L(G2) that properly contains L(G1 ); thus, all strings

in L(G1 ) are syntactically correct for L(G2) as well, but there are

additional strings in L(G2 ) that must be rejected. The semantic rules

must be developed to disallow all derivation trees for strings in L(G2) -

L(GI), that is, all strings not of the form an b nc n n >1l. In words, these

rules require:

(1) all uses of production #m before production #m + 1 for 1 < m < 3;

and

(2) the same number of uses of production #1 as of production #2 as

of productions #3 + #4.

This example illustrates the fact that a simple regular grammar,

along with some simple semantic rules, can be made to behave as a much

more powerful context-sensitive grammar. As will be seen in Section 4,

this is an important point because learning algorithms for regular

grammars are relatively easy to formulate.

3.2 Specification of Semantic Rules

Although, as explained in Section 4, it is possible to learn regular

grammars by utilizing training samples in a grammatical inference algorithm,

no automatic procedures exist for specifying semantic rules. This, however,

is not a particularly serious limitation if the semantic rules are

specified interactively using an approach such as the one suggested in

Section 6.

The semantic rules for recognition are similar in nature to those

already discussed for the hierarchical feature extractor, with the

exception that they apply in general not only to single features, but also

to combinations of features, as well as the production rules in a given

grammar. These concepts are illustrated in the following section.

3.3 Example of Syntactic/Semantic Specification

The material d:cussed in the previous two sections is illustrated

in this section by a syntactic/semantic specification for open-top O's.

:4+
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With reference to the feature codes discussed in Section 2.10, a grammar

for recognizing a large class of this type of character 
is given byt

G (N,E,P,S)

where

N {S,A,B}

z = {b,c,x,v}

and the productions in P are

(1) S - xb (6) A vcB

(2) S - xbA (7) B - xb

(3) S , xcA (8) B xc

(4) S - vcS (9) B xbS

(5) A - vc (10) B -xcS

The semantic rules for this grammar arett

r = TRUE if the average direction of all convex bays and

corners is 1 or 2 (see Fig. 3).

r2 = TRUE if the area of each concavity is less than Tl*

[average convexity area).

r3 = TRUE if, when production (1) is applied, the degree of the

bay is 3 or greater.

r4 = TRUE if (i) production (4) is not repeated consecutively,

and (ii) production (5) does not follow production (3).

r5 = TRUE if OPENING, defined as the Euclidean distance between

the terminator points, is less than T2* [overall length].

tA grammar can be obtained in one of two ways: (1) heuristically by

studying characters of interest, or (2) by formal grammatical inference
techniques. The grammar given in this section was obtained by the former
approach. Grammatical inference is discussed in Section 4.

ttSemantic rules for recognition are denoted by lower case r's in order

to differentiate them from semantic rules for the hierarchical feature
extractor.

.1
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r6 = TRUE if H/W > T3.

where T1 and T2 and T3 are constant threshold values. A given character

is recognized as an open-top zero if its string representation is

syntactically correct (determined by the syntactic recognizer, as

discussed later) and U r. = TRUE, i = 1,2,...,6. In other words, the

input must be both syntactically and semantically correct to be accepted.

The structure (syntax) of acceptable characters is established by

the production rules. For example, the first production yields a convex

bay, while the use of productions (2), (6), and (7) yields a convex bay,

followed by a concave corner, followed by a convex bay.

Semantic rule r1 establishes the acceptable direction of the overall

convexity to be between 450 and 1350. (The average direction of all

convexities is a rugged representation of the direction of the opening.)

Semantic rule r2 precludes large concavities and thus gives a low-level

guarantee of regularity. Rule r3 establishes a minimum regularity of the

boundary. For example, a bay of degree 3 closely resembles a triangle,

which is deemed unacceptable for a zero. Rule r4 similarly excludes

ill-formed characters. Rule r5 excludes large openings ("large" being

measured as a fraction of overall length in order to make this rule

insensitive to size.) Finally, rule r6 precludes zeros which are short

and fat beyond a given threshold. Figure 7 shows some acceptable characters

and Fig. 8 shows some characters which would be rejected as being either

syntactically or semantically incorrect.

3.4 Recognizer

Grammars were shown in the previous three sections to be generators

of string sets. In this section, we consider the problem of recognizing

a given syntactic/semantic string representation.

In terms of overall system specification--representation, learning,

and recognition--the most practical approach is to employ regular grammars

because of the availability of learning algorithms and the simplicity

of formulation for the recognizer. As indicated in Section 3.1, the

utilization of semantic rules allows considerable expansion of the

pattern-representation power of regular grammars.

h~~PP ,_ I,......
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(2) (6) (7)

(a) (b)

(3) (6) (9) (4) (1) (2) (6) (8)

(c) (d)

Figure 7. Characters which are both syntactically and semanti-
cally correct. The strings of numbers correspond to the sequence
of productions which would generate the corresponding character.
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(a) (b)

(c) (d)

Figure 8. Examples of unacceptable characters. The patterns
shown in (a), (b) and (c) are all syntactically correct, but
violate semantic rules r, r1 , and r 2, respectively. The
pattern shown in (d) is gynt ctically incorrect.
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The formal recognizer for regular languages is the finite automaton,
defined as a five-tuple A = (Q,E,5,q ,F), where

Q is a finite set of states,
E is a finite input alphabet

6 is a mapping from Q x E into 2Q, the collection of all

subsets of Q,

q in Q is the starting state, and

F,a subset of Q, is a set of final or accepting states.

We say that a given string is recognized by A if, starting in state q,

the automaton is capable of scanning the entire string and it is in one

of the states of F after the last symbol in the string has been processed.

As an illustration of this notation, consider the automaton A =

6,q ,F) with

Q = {q0,qll, z {a,b}, F = {ql }

and mappings

6(q0 ,a) = {q }

6(q0 ,b) = {ql }

6(ql,a) = 6(ql,b) =

where 0 is the null set (undefined states in this case).

A finite automaton is conveniently represented by its state transition

diagram, a directed graph whose nodes, corresponding to states, are

connected by arcs that are labeled with input symbols which cause transi-

tions. By convention, all final states are denoted by double circles and

the starting state is designated by an entering arrow.

The state transition diagram for the example just given is shown

in Fig. 9. It is noted that this automaton remains in state qo for any

number of input a's, and makes a transition to the final state when a

symbol b occurs in the string. Thus, the language accepted by the automaton

consists of the set of strings of the form {a n b), n > 0. All other

strings are rejected. For example, input abb is not accepted because

6(q ,a) - {q } , 6(q ,b) = {ql } , but =(q,,b) - 0, causing A to halt because
it ual 0  0 {q, qbit is unable to complete processing the entire string.

WW1
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a

Figure 9. State transition diagram.
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In order to incorporate the semantic specifications discussed in the

previous section into the recognition procedure, it is important to estab-

lish the relationship between a grammar and its corresponding automaton.

This relationship is based on a fundamental theorem from formal language

theory which states that a language is recognized by a finite automaton

iff it is generated by a regular grammar [3].

Given a regular grammar G = (N,z,P,Xo ), where X is the starting

symbol, the corresponding finite automaton A= (Q,z,6,q ,F) is specified
as follows. Suppose the nonterminal set N is composed of the starting

symbol X. and n additional nonterminals XlIX 21 .... Xn. Then, the state

set Q of A is formed by n + 2 states [qo ql.... ,n qn+l } such that qi

corresponds to Xi for 0 < i < n, and qn+l is an additional state such

that F = {qn+l }. The set of input symbols of A is the same as E in G, and

the 6 mapping is defined by two rules based on the productions of G, as

follows: For 0< i < n, 0< j < n, and any a in r,

1) if Xi  aX. is in P, then 6(qia) contains qj, and

2) if X. + a is in P, then 6(qi,a) contains qn+l"

As an illustration of this procedure, consider the grammar for open-

top O's given in Section 3.3. This grammar is easily converted to

regular form by defining the following symbols

bI = xb

b2 = xc

b3 = vc

Using these symbols and the above notation for the nonterminals, (i.e.,

S = Xo , A = X1 , and B = X2 ), the grammar becomes

G = (N,E,P,X )

where

N = {Xo,X l x2 }

z = {b l b2 ,b 3 }

tA similar procedure exists for obtaining the regular grammar corresponding

to a given finite automaton [3].

. . .r "
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and the productions in P are

(1) X 0  bI  (6) X1  b3 X2

(2) X0 - biX1  (7) X2  b b

(3) X0  b2 X1  (8) X2  b 2

(4) X 0  b3 X0  (9) X2  1 blX0

(5) Xl I b3  (10) X2  b2 X0

Based on the preceding discussion, the automaton A = (Q,E,6,q ,F)

corresponding to this grammar has the state set

Q = qo,ql,q 2,q3 }

symbol set

= {b ,b2,b 3 }

and final state set

F = {q3}

The mappings are obtained by applying the two rules given above to the

productions of G. For example, production (5) is of the form shown in

rule 2, so that 6(ql,b 3) = {q3}, while production (6) is of the form

shown in rule 1, which gives 6(ql,b 3 ) = {q2}. Thus, the combined mapping

is 6(ql,b 3) = {q2 ,q3}f Following this procedure yields the following

mappings corresponding to the ten productions of G:

6(qolb 1) = {ql,q 3
}

6(qo = {ql }

6(q0 ,b 3) = {q01
I(ql,b 3) = {q2 ,q3

}

6(q2,bl) = {qoq 3}
6(q2,b2) = {qo,q 3

}

tThe fact that there are two possible transitions for this state with the
same input symbol indicates that this is a non-deterministic automaton.
As shown in [3], such an automaton is easily made deterministic by
introducing additional states.

70
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All other transitions, for example 6(ql,bo), yield the null set, indicating

an unacceptable input string. The state transition diagram is shown

in Fig. 10.

The automaton just obtained is a recognizer based on the structure

(syntax) of strings corresponding to open-top O's. In order to incorporate

the semantic rules discussed in Section 3.3, we first determine if a

given string is syntactically correct (i.e., if it is accepted by the

automaton). If it is, the semantic rules are tested using the procedure

discussed in Section 3.3. The only exception is that, instead of

productions, we use the corresponding mappings in the automaton. For

example, semantic rule r4 would now read: r4 = TRUE if mapping 6(q0,b3)

is not repeated consecutively, and (ii) mapping 6(ql,b 3) = {q3
}t does not

follow mapping 6(qob 2). This type of information can be easily incorpo-

rated into the recognition process in the form of a history of automaton

transitions as a string is processed.

t Note that since the automaton is non-deterministic the transition actually

corresponding to production (5)must be used in testing this semantic rule.1.
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b 3

b 3  b 1

bl, b 2 q3

Figure 10. Recognizer (finite-automaton) for open-top zeros.
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IV. LEARNING

4.1 Background

As indicated in the previous section, one of the principal advantages

of using syntactic/semantic formulations in pattern recognition is that

it often allows utilization of grammars which are considerably simpler

than those that would be required if only syntax were employed. In

particular, the use of regular grammars enjoys the distinct advantage of

having the best-developed learning algorithms. The algorithm presented

in this section relies only on one input parameter, and its behavior as

a function of this parameter is fully understood. As will be shown in the

following discussion, this procedure learns the structure of a finite

automaton directly from a sample set of training patterns expressed in the

form of strings.

4.2 Learning Algorithm

Let R be a set of pattern strings (including the empty string) and

let z be a string in .* such that zw is in R for some w in E*. Given

a non-negative integer k, the k-tail of z with respect to R is defined as

the set {wJzw in R,IwI < k). In other words, the k-tail of a string z is

a set consisting of all the strings w subject to the conditions that, for

any particular w, the string zw is in R and the length of w is less than

or equal to k. For notational convenience, we denote the k-tail set as

h(z,R,k) = {wlzw in R, w < k)

This notation clearly shows the functional dependence of the k-tail on z,

R, and k.

Using the k-tail definition, an automaton corresponding to R and a

given value of k is obtained by means of the following procedure [3]:

(1) r is formed from all the different symbols in R.

t .* is the notation used to represent the set of all strings formed from

symbols of r, including the empty string.

I
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(2) The initial state is given by

qo = h(x,R,k)

where A is the empty string.

(3) The set of states is given by

Q = {qlq = h(z,R,k) for z in Z*).

(4) the final state set is given by

F = {q Iq in Q, x in q).

(5) The mappings from a state q with an input symbol "a" are

given by

6(q,a) = {q' jq' in Q, q' = h(za,R,k),

q = h(z,R,k)l

This procedure for obtaining an automaton is best explained by an

example. Suppose that R = {a,ab,abb} and we let k = 1. From Step 1, we

have E = (a,bi. Step 2 gives the starting state as qo = h(A,R,l). From

the above definition of h,

h(,R,l) N {w w i R, Iw! < 11

= {a}

= 0

In other words, since I0) = 0, the only string Aw that is in R, and has

length less than or equal to 1, is a. Thus,the set {a} is defined as

corresponding to state qo"

The set Q of states is obtained from Step 3 by changing z. As shown

above, when z =A we have

= (a}

= 0

Next, we select z = a and obtain

t-71t
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h(a,R,l) : {w law in R, lwl < 1)J {x,b}

=ql

In this case the only strings w that can be appended to z = a with zw

being in R and lw _< 1 are X and b. We define this new set as state q l"

Next we consider the string z = ab and obtain

h(ab,R,l) = w abw in R, jwj < I}

{x,b

which does not produce a new state. The next string is z = abb. This

yields,

h(abb,R,l) {X}

q q2

Other strings z in z* will yield, in this case, strings zw that are not in

R, giving rise to a fourth state, denoted by q , which corresponds to the

condition that h is the null set. Therefore, we have the state set

Q = {q 0,q,ql2 ,q }

According to Step 4, the final state set is given by

F = {q I q in Q, A in q)
= {qlq

2 }

Note that, since both q, and q2 contain X, these two states are in the final

state set.

Finally, the mappings are obtained using Step 5. Starting with qo'

we obtain

6(q ,a) {q j q, in Q, q' = h(xa,R,l),

qo= h(,R,l)}

ji
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Since q h(Aa,R,l) = h(a,R,l) = ql, we have

6(q0 a) = ql

Similarly,

6(q ob) = {q' jq' in Q, q- = h(xb,R,l)

qo = h(x,Rl)l

= q

The second step follows from the fact that q' = h(bR,l) = 0'

Next we consider transitions from ql which has two representations,

h(a,R,l) and h(ab,R,l). Using the first representation yields

S(qla) {q' q- in Q, q' = h(aa,R,l),

q = h(a,R,l}

q q¢

Using the second representation we obtain

S(qla) = {q' jq' in Q, q- = h(aba,R,l),

q, = h(ab,R,l)}

= 0

The transitions from q, with an input of b are similarly given by

6(ql~ b ) = {q' Iq in Q, q' = h(ab,R,l),

q= h(a,R,1)}

= q

and

8(q,b) {q' jq' in Q, q' = h(abb,R,l),

q, = h(ab,R,l)}

= 2

Following this procedure for q2 and q yields the following mappings:

I -- -*4 f -I II 
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6(q2,a) = q

6 (q2 ,b) = q

6(qya) = q
6(qob) = q¢

The automaton just obtained from the strings in R is shown in Fig. 11.
It is of interest to note that the automaton recognizes strings of the form
abn, n > 0. This is a reasonable generalization of the structure present

in the strings of the learning set: R = {a,ab,abb}.

4.3 Properties of the Inferred Automaton

Given a specific string set for learning, the procedure discussed in
the previous section has a very important characteristic: it depends only

on the parameter k. Furthermore, the behavior of the learning method is
known to have some useful properties as a function of k. Letting L[A(R,k)]
represent the language accepted by the inferred automaton, A, for a

specific R and k, these properties may be stated as follows [3]:

(1) For any k > 0, R is a subset of L[A(R,k)].

(2) If k > m, the length of the longest string in R, then

L[A(R,m)] = R.
(3) If k = 0, then L[A(R,O)] =

(4) L[A(R,k+l)] is a subset of L[A(R,k)].
The first property guarantees that, as a minimum, A will accept all

the strings in R. Property 2 guarantees that A will accept only R if

we set k > m. Property 3 states that k = 0 gives a useless result: an
automaton that accepts all strings composed of symbols from Z. Finally,

Property 4 simply states that increasing k increases the selectivity of
the recognizer. From these properties, it is easily seen that k must be

in the range 0 < k < m.

Al
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b

aa

a,b

Figure 11. Inferred automaton.
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V. CHECKING FOR CLASS SEPARABILITY

One of the most important issues in the design of pattern recognition

systems is to have an a priori idea of how well a set of selected features

discriminate between different pattern (lasses. In the present problem,

this is equivalent to establishing whether or not two or more automata

(of different classes) recognize the same subset of strings. In other

words, a string that is recognized by more than one automaton is a result

of overlapping pattern classes. As discussed below, another important

property associated with using finite-state automata as recognizers is

that checking for this type of overlap is reasonably straightforward.

Suppose we have two regular languages L1 and L2, recognized respec-

tively by deterministic finite automata A, = (Q'EI,61,qo'F) and

A2 = (Q2, 2,%62,o,F 2); that is, Ll = L(AI) and L2 = L(A2). Then an

automaton A such that L(A) = L(AI) n L(A2) is given by

A (Q,E,6,q,F)

where

(1) Q =Q x Q2 =E(q'q)qEQl'q e Q21

(2) E = 1 UE2

(3) 6 is a mapping from Q x Z onto Q such that, for any

symbol "a" from E,
A

6((q,q),a) = (6l (q,a),62(q,a))

(4) %o= (jo,qo) is the starting state

(5) F = I{(4,^)I~F, qF2

This automaton accepts an input string if and only if both A1 and

A2 accept it. In other words, A recognizes all string in the intersection

of LI and L2* The notation introduced above is clarified by the following

example.

Consider the automata

A1 =

- - -B14', ~ -
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with

Ql = {q0 ,ql,q 2 }

E = {a,b}

6 1(o a) =qo 61(q0 b) = q,

I (qa) = 6 1 (ql'b) = q,

S1(q2,a) = q2  61(q2,b) = q2

Fl = Iql }

and

A2 = (Q2, 2,962,qo,F 2)

with

Q2 = {4o'q 4 'q 5
}

E2 = {a,b}

a2:

2(q0 a) =o 62 q0 b) = q4
Y2q 4,a) = q5  62(q4,b) = q5
62(q5 'a ) = q5  62(q5,b) = q5

F2 = {q5 }

The state transition diagrams for A, and A2 are shown in Figs. 12(a)

and (b). The languages recognized by these automata are, respectively,

Ll = L(Al ) = an b bm n,m> 0

L2 = L(A2 ) = an b(a + b)(a + b)m n,m > 0

where the "+" indicates "or". That is, an element of L(Al) is a (possibly
empty) string of a's of length n (n > 0), followed by a string of at

least one b, and an element of L(A2) is a (possibly empty) string of a's

followed by at least one b, followed by a string of at least one a or b,

and any combination of a's or b's thereafter.
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In order to form the automaton A which recognizes L(AI)1n L(A2), we

proceed as follows. Using the notation introduced above,

A = (Q,E,6,q ,F)

where the starting state is qo= (o'q o ), and

Q = Ql x Q2 :{(qo'Ao)'Go 'q 4)'60 5)(q'q )

(qlQqn ),(ql,q5),(q2,qo),(qo,q4),(qo,q5)}

E = ElO)E 2  {a,b}

6:

((qooj ),a) = (q ,qo) 6((q oo ),b) = (ql,q 4)

6((ql,q 4 ),a) = (q2,q5) 6((ql,q 4 ),b) = (ql,q 5 )

6((q 2,q5),a) = (q2,q5) 6((q 2 ,q5),b) = (q2,q5)

6((ql,q5),a) = (q2,q5) 6((ql,q 5 ),b) = (ql,q 5)

F = {(ql,q 5)}

It is noted that the set Q consists of all ordered pairs of states
in Q, and Q2. Also the notation (qi,q.) refers to a single state of A,

and is used to accentuate the fact that a state of A arises from states

qi and qj in A1 and A2 , respectively. Thus, A may be viewed as implementing

A1 and A2 simultaneously in parallel. Automaton A acts as A1 and A2
driven by the same input, with A accepting an input if and only if both

A1 and A2 accept it.

With reference to the above 6 mappings, it is noted that no transition

functions were specified for ( 0 ,q4 ),(ql,qo),(No,q 5 ),(ql,q 0 ), and (q2,q4 ).

The reason for this is easily explained by noting the fact (see Fig. 12)

that these five composite states are combinations of states in A1 and A2

at least one of which is unreachable starting from o and q, respectively.
0 q 0

This implies that no input string exists which can cause A to reach any

of the five states listed above by starting at its initial state (j ,0q4).

00i
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These unreachable states can be eliminated from the state set Q without

affecting L(A).

The language

L(A) - L(A1 )(AL(A 2) = an b b bm

n,m > 0

consists of strings which have the form of a series (possibly empty) of

a's followed by a string of at least two b's, which are the strings which

are accepted by both A1 and A2.

The procedure just discussed has two important implications. First,

if L(A1 ) and L(A2 ) are disjoint, then L(A) will be the empty set, indicat-

ing perfect recognition by A1 and A2. Second, if L(A) is not empty, the

structure of the strings in the overlapping subset can easily be

examined. As indicated in the following section, one approach for

eliminating the overlap is to use semantics. It is also noted that the

method is easily extended to a multiclass situation simply by considering

two classes at a time.

{W



46

VI. ORGANIZATION OF THE SYNTACTIC/SEMANTIC CHARACTER RECOGNITION SYSTEM

The purpose of this section is to organize the material presented in

the previous sections in the form of a system which utilizes both syntax

and semantics in the recognition process.

The basic approach proposed for designing (training) the recognition

system is shown diagramatically in Fig. 13, where the dashed lines indicate

interactive user inputs. The various stages of this approach are

discussed in the following paragraphs.

The training set consists of a set of thinned characters of known

classification. The hierarchical feature extraction and attribute assign-

ment stage is based on the methods discussed in Section 2. It is noted

that, although the features to be extracted are well defined, the

semantic rules of some of these features require the specification of

one or more thresholds. For example, the semantic rules for lake features

require the specification of thresholds T,(4) and T2 (4). The procedure

for doing this is to compute this particular feature for all appropriate

characters in the training set and then to select the thresholds as the

minimum values which encompass all acceptable lakes, with the degree of

acceptability being established by the user via a display examination of

these features. In other words, the user must determine what constitutes

an acceptable lake feature and the thresholds are used to place limits on

the class of acceptable features. The selection of thresholds for other

features is carried out in a similar manner.

The next step in the training procedure is to arrange the extracted

features in the form of a string, as discussed in Section 2.10. These

strings are then fed into the grammatical inference stage, where an

automaton is generated for each class using the method discussed in

Section 4. It is noted that the only parameter required by the inference

algorithm is a value of k to establish the k-tail.

Given a value of k, the resulting automata are then used to recognize

the training set. It is expected that this stage of the process will

require the most intensive user interaction. The automata generated by
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the inference algorithm provide the basic syntax (structure) of the

training set subject to the limitations inherent in regular grammars. It

is unlikely that this formalism by itself will be sufficient to completely

classify the training set correctly. The two tools available to increase

discrimination are the check for class separability shown as the next

stage in Fig. 13, and the use of semantic rules. The set of overlapping

strings in any two classes can easily be established using the procedure

discussed in Section 5. This information can be used to study the struc-

ture of the strings that are not uniquely recognizable, and semantic

rules can be introduced to resolve the conflicts, as discussed in

Section 3. It is noted that the use of a display to show the appropriate

automata and to highlight the state transitions followed in recognizing a

given string will be a valuable aid in establishing the necessary semantic

information.

The design of the syntactic/semantic recognizer is complete once

the training set is recognized with acceptable accuracy. During automatic

operation, the structure of the system consists of the stages shown in

Fig. 14. In this mode of operation a character can be rejected prior to

going into the recognition stage if its features and attributes are

outside the learned thresholds or fail to satisfy the corresponding

semantic rules. If a character passes this test, it is fed into the recog-

nizer (automata). At this point it is assigned to a character class or

rejected if it fails to be accepted by a unique automaton based on the

syntactic/semantic information developed for this stage during the

training phase.

Am
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Training Set

HierarchicalThreshold
Feature Extraction and Spe aon

Attribute Assignment Specification

L J

( :d String Generation

Display r------

Grammatical I Specification

InFerence of k

Recogni tion of I Smni
~Training Set with

Resulting Automata Specification

Check for

Class Separability

Figure 13. Structure of the syntactic/semantic recognizer
during training. Dashed lines indicate interactive inputs.
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Input
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Feature Extraction and

Attribute Assignment

Initial Test for Thresholds andReject <hI Acceptance Semantic Rules

Recognition Semantic Rules

Classification

Figure 14. Syntactic/semantic recognizer in automatic
operation.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The material discussed in the previous sections represents a unified

approach for the development of a syntactic/semantic character recognition

system. The most important aspects of this approach are: (1) a hierarchical,

semantics-based feature extractor, (2) a formulation that leads to

representations that can be handled with string grammars, (3) the use of

semantics in the recognition process, (4) the use of a procedure for

studying class separability, and (5) a proposed interactive approach

which combines automatic syntactic processing with user-defined semantic

rules.

Although the overall system structure has been developed in some

detail, there are a number of areas that require further investigation.

In particular, we recommend that the following tasks be carried out as the

next step in this project.

Task 1. Extension of semantic rules for the hierarchical feature extractor.

The semantic rules proposed in the report are preliminary. This

task will consist of extending and refining the semantic rules

for feature description in the context of the NORDA OCR system.

Task 2. Evdluate the parsing approach to recognition. This task will

investigate the formulation of a parsing (vs. automaton) approach to

recognition. Parsing algorithms are generally faster and this

task will address the problem of incorporating semantic rules into

the parsing process.

Task 3. Extend the semantic rules for the syntactic/semantic recognizer.

Considerable work remains to be done in proposing semantic rules

for the recognition stage. This task will address the problem

of specifying a set of semantic rules for each of the ten

numeral classes, with possible extension to alphanumerics.

Task 4. Extend the -vntactic/semantic approach to border-oriented

features. viork done to date on the syntactic/semantic approach

has been focused on skeleton-oriented features. It is known

that border-oriented features can be very useful in situations

. . . ." - '' " . . . .. ' * llll I -I
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involving characters such as filled-in 8's. This task will

address the extension of the hierarchical feature extractor and

the syntactic/semantic recognizer for handling border features.

Task 5. Refine the interactive approach used in the design of the

recognition system. The approach used in the specification of

semantic rules is highly interactive. This task will consist of

developing a specific formulation for the implementation of this

approach, including techniques for user specification of

relevant parameters.

I____
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APPENDIX A

The following discussion deals with elliptical symmetry. This type

of feature is useful in character recognition for determining the quality

of characters composed, either partially or entirely, of elliptical

segments, such as 9's and O's. Two procedures are developed below. The

first is based on a minimum-error elliptical fit, while the second applies

to any type of symmetry abot two principal axes. Both methods are

independent of rotation.

A.l Procedure 1

Given K sets of points, Ei,i=1,2,...,K, with set Ei containing #Ei

points, the following procedure individually measures elliptical symmetry

about two principal orthogonal axes for each set. In terms of character

recognition, each set E. contains the coordinate points of, for example,

the skeleton of a character, and i ranges over the number of characters

(K) to be processed.

(a) Let {Xnyn }, n = 1,2,...,#E i, represent the coordinates of

all points in E.

(b) Define the column vectors nz = (xn,y n
)", where the prime ()

indicates transposition.

(c) Compute the 2 x 2 covariance matrix

#E 
i1

-i =#Ti n=l -n--n - mim 1

where

#Ei

m i nll '-

(d) Compute the two orthogonal elgenvectors and corresponding

elgenvalues of Ci. (Since the matrix is real and symmetric,

the existence of orthogonal elgenvectors is guaranteed.

Almost any scientific package will contain a subroutine for
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computing the eigenvectors and eigenvalues of a real, symmetric

matrix). These two eigenvectors, denoted by tl = (a,b)" and

t2 = (cd)', point in the directions of principal data spread,

subject to the orthogonality constraint. The amount of

spread is proportional to the eigenvalues and is assumed

for notational convenience that the largest eigenvalue

corresponds to e

(e) The equation of an ellipse in the (x,y) plane centered about

±i and with el andt2 as the principal axes is given by

(z - mn.)C (z - i.) - e = 0

where e is a threshold that controls the size of the ellipse.

(f) Find a least-squared elliptical fit to the set of points

{(x nyn)} by finding a value of e which minimizes the quantity

#E.

R(e) = I [(z -- m')'Cl(n -m in ) - 8] (1)
n=l

It is shown below that both the expected value of (1) and the threshold

which minimizes this expression (i.e., gives the optimum fit) are equal to

the dimensionality of z. Thus, given a set of points to be tested for

symmetry, we obtain a measure of elliptical symmetry by computing (1) with

the optimum threshold and either comparing the result against a perfect

ellipse (i.e., zero error in (1)) or against the expected value of (1).

The first approach is applicable when a fine measure is desired, while the

second approach is more rugged.

A.2 Expected Value of Q(z)

Let

Q(z) = (z - m)C (z - M) (2)

where z is a random vector of dimension d, and m and C are the mean vector

and covariance matrix of the population from which the z's are drawn.

Consider the linear transformation

u A z (3)
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where A is a d x d matrix. Then the mean vector of the u's is given by

m* = E(U)

= E(A z)
(4)

= A E(z)

= Am

Similarly, the covariance matrix of the u's is given by

C* = E{(u - m*)(u - m*)-)

= E{(A z - A m)(A z - A m)'}
(5)

= A E{(z - m)(z - m)-}A-

= A C A'

Since C is a symmetric matrix, a complete set of orthonormal eigenvectors

for this matrix can always be found. If the rows of A are chosen as these

vectors, then Eq. (3) becomes the Hotelling transform and it is well known

that C* will be a diagonal matrix with main diagonal component, Xk9 equal

to the variance of the kth component of u, for k = 1,2,..., d.

From Eqs. (2) through (5),

Q(U) : Cu- m*)C*-1 (u - m*)

- (z- m)A( )- 1c A-1 A(z - m)
1 (6)

- (z - m)C (z - m)

It then follows that

E{Q(z)) = E{Q(u)) (7)

However, since C* is a diagonal matrix,

E{Q(u)} = E{(u - m*) C (-l m*)}

T. ---.
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k=l Ak
d E{(uk

2  ) 2
-- k k  (8 )
k=l k

d k 2

k;1 1 k

where k is the variance of component uk which, based on the above discussion,

is equal to Xk. From Eqs. (7) and (8), we then have

d
E{Q(z)} = I I

k=l (9)

That is, the expected value of Q(z) is equal to the dimensionality of z.

A.3 Optimum Threshold
Let

QL(z ) = (z - m.)c(z 
- i) 

(10)

Then (1) may be expressed as

#E 
i

R(e) = I [Qi(Zn) - 2(11)
n--

The minimum of this expression is obtained setting the partial derivative

with respect to e equal to zero and then solving for e. The result is

#E t
1 Qi(z (12)

-1
#E- L -- n

== V0Y
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where denotes the value of 6 which minimizes (11). The right side of
Eq. (12) is recognized as an approximation to the expected value of Qi(z),

where the i in this context denotes the population of vectors belonging

to set E.. It then follows from Eqs. (7), (9), and (12) that
1

8 E{Qi(z)l = d (13)

In other words, the value of 0 which minimizes (11) is equal to the

dimension of the z's.

For character recognition applications, the z's are pixel coordinates

and d = 2. Thus, the least square elliptical fit to the points in Ei is

obtained in this case by setting 6 = 0 = 2 in (1).

A.4 Procedure 2

This procedure also uses the eigenvectors described above, but is

more general in the sense that it applies to any type of symmetry about

two principal axes.

(a) Repeat steps (a) through (d) in Procedure 1.

(b) The perpendicular distance between any point z in E. and a line

containing e I is given by

D (i) =- 1
- e 2 1

n Ile2 11

where lle211I= [c + d I  . Compute the average perpendicular

distance between this line and all points lying on its positive

side (z lies on the positive side of the line if_42 > 0). This-n
average distance is given by

Di(i) 1+  Dn(i)
1 N

where the summation is taken over values of n for which ze > 0

and N is the number of points satisfying this condition.

(c) Compute the average perpendicular distance of the points lying

on the negative side of the line containing e. This quantity

is given by

L -awl
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-. 1

D1(i) = Dni)

where the summation is taken over values of n for which

e2 < 0 and N- is the number of points satisfying this

condition.

(d) Repeat steps (b) and (c) using el to obtain D (i) and DM(i).

(e) Define symmetry measures about el and t2 as sl(i) =

ID+(i) - Dl(i)I and s2(i) = ID2(i) - Dil(i)I for i = 1,2,...K.

An average measure of deviation from symmetry about the principal axes is

given by the respective values of sI(i) and s2(i). If, for example, the

points in Ei are symmetrical about these axes, then s1 (i) = s2()= 0.

*1J
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APPENDIX B

The following discussion deals with a procedure for corner detection

and quantification. The method was developed in an attempt to incorporate

both local and global information in the corner detection problem. After

experimenting with the technique, however, we found that it lacks sensi-

tivity and that it performs no better than the simpler approaches suggested

in our earlier work [1]. The procedure is included here for completeness

and because its development contains some concepts that may be useful in

other contexts. Its adoption as a useful processing tool is not recommended.

B.l Background

A corner may be defined as the fortuple C = (c,a,8,e) where c, the

corner point, is the point of intersection of two straight line segments,

a and 6, with lengthsial>O andll> 0, respectively. It is assumed that

the line segments meet at one of their extremes, forming an interior

angle 6. The corner is said to be acute if 0 < e < 7/2, right if e = 7/2,

obtuse if r/2 < e < w, and degenerate if 0 = 0 or 0 = r.

In the continuous domain, and in the absence of noise, the relationship

between 0, jai, and 161 becomes important only near degeneracy or when 1-1 1

or Jai approach zero. In the examples shown in Fig. 1, for instance, one

would have difficulty in visually recognizing the presence of a corner only

when 0-*0, O-Ic, lal o, or jl-0o. In the presence of noise, however, the

relative values of these parameters play a central role in our ability to

detect a corner, as illustrated in Fig. 2. Part (a) of this figure shows

an acute corner which, for all practical purposes, h'; been rendered undetect-

able by the presence of noise. Figure 2(b), by contrast, shows a right

corner with the same values of ia and jai and corrupted by the same amount

of noise. This figure is clearly closer to our intuitive concept of a

corner, thus illustrating the importance of e in establishing corner-like

properties in a noisy segment.

The relative importance of Hj and (j is illustrated in Fig. 3.

Part (a) of this figure shows an undetectable acute corner in which JaI and

Aia
'I
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CC

C c e

Fig. 1. Examples of acute, right, and obtuse corners.
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(a)(b

Fig. 2. Effect of 0 in the detectability of corners in
noisy segments. (a) Noisy obtuse corner. (b) A right corner
with the same values of ltal and IBI and corrupted by the same
amount of noise.

T.
L
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jai are small with respect to the amount of noise corrupting the segment,

while Fig. 3(b) shows a much more corner-like segment; this figure has the

same amount of noise, but much larger values of Ii and JiB. This effect

is clearly analogous to the concept of increased signal to noise ratio in

communication theory, in the sense that the greater the corruption the

larger Jai and 101 would have to be to define a corner-like segment.

If we view the process of digitizing a segment as a mechanism that

distorts (i.e., introduces noise to) the spatial integrity of the segment,

it is evident from the preceding discussion that the relationship between

the amount of distortion and the parameters 0, Jai, and Jai is an essential

consideration in the development of any procedure for detecting and evalu-

ating corners in digital segments. The examples given in Figs. 2 and 3

also illustrate the futility of using local corner detectors or curve-

tracing techniques which do not take into account the values of these or

similar parameters for finding corners in digital segments.

B.2 Corner Detection and Evaluation

The procedure developed in this section is based on the idea of utili-

zing a model of an ideal corner in order to establish a measure of corner

"quality" which takes into account segment distortion and the parameters

e, Jai, and Ji defined in the previous section. The following discussion

applies only to simple, thinned digital segments (i.e., thinned segments

which do not cross themselves) with only two distinct end points. Multiply-

connected segments can be nandled by decomposition into simple segments at

the branch points.

With reference to Fig. 4, let C = (c,a,O,e) denote an ideal (noise-

less) continuous corner withend points a and b, and denote by A a bound

on the spatial distortion of a and 8 as a result of digitizing C. The

parameter x could be, for example, a function of the variance of the points

in a digital segment referenced to the straight line segments a and B.

In order to relate C and the "broad" corner defined by the region

between the dashed boundary in Fig. 4, it is necessary to establish a

proportionality factor that involves x, a, 0, and e. This can be

accomplished with the aid of Fig. 5. Let d be a straight line segment

I
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Fig. 3. Effect of la and 161I in the detectability of corners
in noisy segments. (a) Noisy acute corner. (b) A corner with
the same angle and noise, but with -arger values of lai land
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Fig. 4. An ideal corner and bound on the spatial distortion
of the segments a' and B
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starting at c, bisecting 0, and ending at the intersection of d with line

6. The projection of A along d is given by

X, = X (1)

sin( )

As X increases for a fixed value of 0, A' increases and the area of

triangle a'c'b'decreases proportionally. Similarly, for fixed X, a decrease

in e causes X' to increase and the area of a'c'b'to decrease. Clearly, the

smaller this area, the greater the difference between the ideal corner and

a distorted corner with bound X. Suppose, however, that we require that

the distorted corner be scaled so that the area a'c'b' is equal to the

area associated with the ideal corner (i.e., the area of abc). From

elementary trigonometry, it then follows that the length of line d must be

extended to Idel = jdj + x. Writing this as a proportion, we have

Idel A(

Idl Idl (2)

or, using Eq. (1):

+ (3)

Idlsin(y)

where y is the proportionality factor Idel/Idl.

By using the law of sines, it follows from Fig. 5 that 1

Idi nd sine sine a sotht-i

snaad= so that
sinea l 1

Idl = 16Ila Isine (4)I 6lsin( ')(4

Since d bisects 0, we also have the relation - -i-iand, using the
1521 18F

r borA-'' .- * I, I~
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fact that 1611 + 1621 -- t6,it follows from Eq. (4) that

Idl = (5)(IlC& + I aI)s'..2

Substitution of Eq. (5) into Eq. (3) yields

(Jal + 8I) (6)

lllsine

This equation may be expressed in terms of the shorter of the two

segments by letting

mi min(lal,IBI) (7)

and

r ma~jul101)(8)min(ltalI18)

Substitution of Eqs. (7) and (8) into Eq. (6) yields

+ (I + r). (9)

rLmi ns ine

I,

I-.
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